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Abstract

For a wide range of nonlinear wave processes - from capillary to planetary waves -
them-y predicts the existence of Kolmogorov-type spectral cascades of energy and other
conserved quantities occurring via nonlinear resonant wave-wave interactions. So far,
observations of wave turbulence (WT) have been limited to small-scale processes such as
surface gravity and capillary-gravity waves. Presently, sea surface height measurements
by the Topex/Poseidon atimeter alow one to detect WI' with spatial scales from about 50
km and to athousand kilometers - occurring in baroclinic inertia-gravity (1G) waves. The
average amplitude of sea surface height oscillations is about 5 cm, which means that the
internal wave amplitude is roughly 50 m. In many regions this amplitude is much greater.
Similar to the case of acoustic waves generated by 3D turbulence, 1G waves attain their
highest intensity in regions of a large horizontal velocity shear near mgjor ocean cwients -
where the level of 2D vertical turbulence is high. The degree of the IG wave nonlinearity
in such regions is well above the weak-turbulence limit (of 4-wave resonant interactions):
in the Gulf Stream and Aghulas Current regions, the wave spectra attain the saturation
regime similar to the Phillips spectrum of surface, gravity waves on deep water.  Scattering
of barotropic tide by ocean floor topography provides another mechanism of Laroclinic IG

W’]" which has important implications for global dissipation of tidal energy.
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1. Introduction

By wave turbulence (YVT for brevity) we understand local nonlinear resonant wave-
wave interactions resulting in continuous spectral fluxes of energy and, possibly, other
conserved quantities from the range of scales where the wave motion is generated by
external forcing to either smaller or larger scales (e.g., Zakharov, 1984; Zakharov et a.,
1992). The corresponding power spectra of fluid velocity or sea surface height (SSH)
oscillations tend to be rather broad and, within selected sub-ranges of wavenumbers and
frequencies, exhibit power-law behavior. In these “scale-invariant” regimes, the SSH
geometry is characterized by a quasi-f{ractal pattern (Glazman, 1993).

A standard example of WT isthe field of wind-generated surface gravity waves on
deep-water: the wind energy supplied within a narrow spectral range (the “generation
range”) is cascaded down the spectrum due to nonlinear interactions within resonant wave
tetrads (Hasselmann, 1962). Provided the wind fetch and duration are sufficiently long,
an inverse cascade of wave action develops at wavenumbcrs below the generation range
(Zakharov and Z.aslavskii, 1982). Some of the energy is eventually dissipated in the high-
wavenumber range due to small-scale wave breaking and viscosity and some energy is
advected in the wave propagation direction due to the wave group velocity.

Many dynamical features of deep-water surface. gravity and capillary waves are expected
to be found aso in baroclinic IG waves because they attain a substantial degree of
nonlinearity. Such features include: 1) the inverse cascade of wave action causing large-
scale oscillations ("condensate™) a near-inertia] frequencies (Falkovich and Medvedev,
1992), 2) the presence of several distinct power-law sub-ranges in wave spccira
(Glazman, 1996), 3) intermittent events of short-length wave breaking producing small-
scale turbulence, etc. Thefirst feature is of special interest: the high kinetic energy at the
inertial frequency has been observed by many authors - see (Webster, 1968) for a historic
review. However, traditional explanations of this spectral peak based on linear theories

(e.g., Pollard, 1970; Desaubies, 197/3; Munk, 1980) have serious deficiencies. The 1G




WT theory predicts the inertial peak as a result of the inverse spectral cascade of wave
action from the shorter-scale range where the energy, action and momentum are supplied
by externa forcing -- similar to the case of wind-generated surface gravity waves on deep
water (Falkovich, 1992; Falkovich and Medvedev, 1992; Glazman, 1996).

In contrast to the usual eddy turbulence, W' was never regarded as a key physica
process for ocean dynamics. However, this perception may have to be revised. As
discussed in Sect. 7, WT appears to be auniversal anti well pronounced phenomenon with
strong links to other components of ocean dynamics.

In the framework of shallow-water equations in the beta-plane approximation, large-
scale fluid motion can be divided into two basic types. the “slow” motions - which are
essentially of vertical nature - and the “fast” motions of the gravity-wave type. For
numerical modeling of ocean circulation, the latter represent “ computational noise, ” hence
they arc filtered out by using the quasi-geostrophic approximation (the Charney-Obukhov-
Hasegawa-Mima equation) or by imposing the rigid-lid condition at the surface (for the
barotropic component). The intrinsic frequency of the fast oscillationsis limited from
below by the local inertial frequency f = 2sinf, where Q2 is the Earth rotation frequency
and 6 is the geographic latitude, whereas the characteristic timescales of Rossby waves and
other quasi-geostrophic motions are measured in weeks and months, not hours. A
statistical approach permitting separation of motions with different time scales is described
in Sects. 4 and 5.

Although the statistical characteristics of the slow motions represent only anintermediate
result of our work, they arc of great intrinsic interest. Therefore, in Sects. S and 7 we
analyze these motions and quantify intensity of the quasi-geostrophic component in the
Atlantic. We also demonstrate that the Rossby wave field is characterized by a broad
angular and wavenumber spectra; hence, the traditional determination of the wave phase
velocity based on longitude-time plots of a low-pass filtered SSH field is fundamentally

flawed and it yields a greatly overestimated phase velocity. The material in Sects. 5 and 7




facilitates our conclusion that the main source of baroclinic IG wave energy iSthe instability
of vertical motions with respect to gravity mode perturbations.

Baroclinic IGW'T has never been expected to affect satellite atimeter measurements.
By design, the primary mission of satellite altimetry is to measure SSH variations
associated with large-scale ocean dynamics. Hence, any substantial contribution of 1G
W]" (except for purely periodic, tidal wave component which is routinely removed from the
measured SSH signal) would encumber the primary mission of ocean altimetry and cail for
are-interpretation of some of itsresults. The present work gives a strong ground to such

concerns.

2. Theoretical spectra of 1GWT
‘I"'he main goal of our study isthe identification of IGW'T in altimeter measurements.
This task is greatly facilitated given theoretical knowledge on the 1G W' process. in this
Section we provide a brief review of wave spectra derived in (Glazman, 1996).

Depending on the location of the external forcing in the Fourier space, nonlinear wave
dynamics may be dominated either by the direct energy cascade or by the inverse cascade of
wave action (Falkovich and Medvedev, 1992). If the frequency of wave excitation is
greater than f but much lower than the Brunt-Viisild frequency, the spectrum will contain
both subranges . This case may be realized, for instance, at mid-latitudes where baroclinic
1G waves receive (at least part of) their encrgy from a semi-diurnal barotropic title scattered
by ocean floor topography. Using the IG wave dispersion relationship,

0 =2+ (ke (1)
acrude estimate of the characteristic wavenumber scale for the external energy input is
found as

kp = R (@p )2 - 11 <73 1sin(©)~ ] Teot(@)/ R )
where @y isthe tidal frequency and R isthe Rossby radius of deformation,

R=clf 3)




Here, C is the phase velocity of Kelvin waves for the 1st baroclinic mode. Using (3) in
(2), we find kT =282cos(8)/c. Therefore, the length of baroclinic IG waves receiving
energy from tides tends to increase with an increasing latitude. In the framework of the
1.5-layer model, ¢ =+/g’H, where g'= (Ap/ p)g is the reduced gravity and H | is the
mean depth of the thermocline. For a continuous stratification, ¢ = ~/gh where histhe
“equivalent depth” for the 1st baroclinic mode. ‘I’his parameter is related to the Brunt-
Viisila frequency, N, by

h= (NH/m)* g™ (4)
in Figs. 1-6, wavenumber kT is marked by a box at each curve. If baroclinic IG WT'is
assumed to be generated by the semi-diurna tide, the wave spectrum would be determined
at k >2€cos(8)/c by the direct cnergy cascade and at k <2€cos(8)/c by the inverse
cascade of wave action.

The theoretical spectrain this Section pertain to long internal waves of the first baroclinic
mode, i.e. thermocline depth oscillations, H+ h(x,t). The power spectrum of SSH
oscillations M(x,t) is found by multiplying the power spectrum of h(x,t) by

£ = ((Ap/p)Ha/H)2, ()
where Ap/p is the relative difference in the water density across the thermocline boundary,
H3 is the depth of the lower layer (in the 1.5 layer mode], Ho/t1~O( 1)) and H is the ocean
depth. The characteristic value of € at mid-latitudes is E=10-6.

2.1 Direct energy cascade

For the lowest degree of wave nonlinearity - when wave-wave interactions occur in
resonant tetrads - the 21D spectrum in the direct-cascade range (omitt ing the anigul ar

dependence) is given by

oy @ OR 0 -1+ 7)
)= 3 (213,506 (6)

where z = 1 4(kR)?




Its ID version, F1 (k), isillustrated in Fig.1.Q=(R/ C*) 0 is the non-dimensional
spectral flux of energy, and Q is the dimensional flux of energy (per unit surface area per
unit mass of water) which can be viewed as the rate of energy dissipation in the high-
wavenumber range. Furthermore, tq isthe universal "Kolmogorov constant” of
proportionality "whose value is presently unknown.

As the wave nonlinearity increases, the number of resonantly interacting wave
components grows, and (6) has to be replaced with a more complicated expression
accounting for 5-wave and higher-order resonant interactions. Denoting the effective

number of the resonantly interacting wave harmonics by v, the spectrum becomes:

Fo QRO g zav-9) -

v-1) (25 - eI 1)25/:(\/ 1)

The dependence of g onvis presently unknown. The multiwave interaction regime (i.e.,
v > 4) is expected to be observed in ocean regions where the 1G wave intensity is
sufficiently high. Aswill be shown in Sect.7, these are the regions of alarge lateral shear
in the current velocity field. Because the relative degree of the 1G wave nonlinearity (with
respect to wave dispersion) is highest in the high-wavenumber range of the spectrum
(where the 1G waves tend to become nondispersive), the multiwave interaction regime
would occur first of all in the spectrum tail. An example of this regime (with v as high as
10), isillustrated in Fig. 2.

It isinteresting that spectra (6) and (7) display similar trends at k > 0.1 racl/kin: they
approximately follow the k-!power law and do not depend on the Rossby radius of
deformation. This power law is confirmed by satellite altimeter observatiors (e.g., | .
Traon et a., 1994). However, as discussed in Sects. 3 and 4, the high-wavenumber range
of the altimeter-observed spectra is strongly affected by various intervening factors
(“noises’) which may also yield the k-1 behavior.

Of special interest is the case of extremely strong wave turbulence - i.e., v -> oo By

anaogy with the Phillips spectrum of surface gravity waves on deep water, the




corresponding limit of (7) is called the “saturated” spectrum (Larraza et a., 1990). At
sufficiently high k (such that (kR)2 >> 1), equation (7) yields F(k) ~ 4ctq (H 1R)? (kR) .
The corresponding 1 D spectrum is F1(k) - k3. As shown in Sect. 7, this regime is
attained in the Gulf Stream and Aghulas Current regions where high-amplitude 1G waves
are generated by an intense mesoscale-eddy activity.

Because of the presently poor understanding of external forcing, we cannot offer a
specific formula for the energy input, although for a special case of tida forcing such
relationships have been proposed (e. g., Cox and Sandstrom, 1962; Munk, 1966; Baines,
1982).

Spectrum (6) isillustrated in Fig.1for several values of the Rossby radius of
deformation (45, 27 and 20 km) calculated for latitudes 20, 35 and 50 degree, respectively.
[Actually, we plot the 11 spectrum, F;(k)=ekt(k), which can be compared tothe 1 | >

spectra of along-track atimeter measurements.]  We selected the value of an]/3 in (6)

that yields the correct order of magnitude for ekti(k) - as compared to the typica spectra in
Fig.12 - we used &2Q4_6 10-3m?/3sec-l. Assuming, for instance, that the entire

energy flux is due to the barotropic tide scattered by ocean floor roughness and using
Munk's (1966) estimate Q - 1010 m?sec-3, we find the Kolmogorov constant o - 0(10).
This value is greater (by an order of magnitude) than typical Kolmogorov constants in
models of turbulence (including wave turbulence). Assuming smaller values of o, (such as
0 - 0(1)) leads to greater values of Q. Therefore, barotropic title. provides only a fraction
of the IG WT energy, and most of the energy must come from Other sources.

Finally, Fig. 1 shows that, given a constant energy input Q, the wave spoctram in the
"mesoscale"” range is independent of the Rossby radius of deformation (hence, of the
latitude). [By the "mesoscale” we tentatively call the range of wavelengths 50 to 300 km].
Asfollows from Fig. 1, the large-scale range of the spectrum obeys power law k04, and
in the mesoscale range this spectrum rolls off approximately as k-!-2. in most ocean

regions(e.g., I.¢ Traon et a., 1990; 1992; 1994), SS11 spectrain the mesoscale range roll-




off much faster than k'1.2. Such observations agree with (7) for large v (highly nonll_inear
waves), Fig.2. However, as shown in Sects. 6 and 7, large values of v are rather rare in
the real ocean. Finally, at wavelengths shorter than about 70 km, spectra (6) and (7) are
fairly flat - approaching the k'1 regime - in agreement with the observations. An alternative
explanation of the k-1 tail is suggested in Sect. 3.

2.2 Inverse cascade of wave action

The relatively fast spectral roll-off observed in the mesoscale range (e.g., Le Traon et
al., 1990; 1992), Iy (k) - k-3, is best explained by accounting for the wave action spectral
flux caused by weakly-nonlinear wave-wave interactions (Glazman, 1996). In the inverse

cascade range, the 2D spectrum is

};(L):Sap(HlR)?PlB e .

where P = P/ ¢? is the non-dimensional flux of wave action and , isthe Kolmogorov

constant of proportionality for the action flux. This spectrum (multiplied by ek to make it
compatible with the measured 1D spectra) isillustrated in Fig. 3. The values of R and c for

this plot are the same as those for Figs. 1 and 2, and apP 13 is set to 0.21m?/3sec?/3 - to

obtain an order-of-magnitude agreement with the observed spectra, Fig. 12. Assuming the
Kolmogorov constant ., to be of the same order of magnitude as ¢ g of (6), weobtain a

crude estimate for the wave action flux: P=10-5 m?/sec?. The k- 103 rate of the spectral
roll-off shownin Fig.3 isin good agreement with altimeter measurements.

Figures 1 and 3 demonstrate that, while being similar at low waveng;g?g;s, spectra (8)
and (6) exhibit significant differences in the mesoscale range. Except fc‘fr |ts tail, spectrum
(8) yields the best overall agreement with field observations such as Fig. 12. However,
the high-wavenumber range of altimeter-observed spectra is dominated by various noises

discussed in Sect. 3. Hence, it should be excluded from the comparison.




10

2.3 Normalization of SSH spectra

Because of the uncertainty in the actual values of spectral fluxes Q and P and
Kolmogorov constants, comparison of theoretical spectrawith field observations requires
additional effort. To remove the uncertainty we shall normalize spectra as F(k)/F(ko),

where kg -R-1: Figures 4 and 5 illustrate non-dimensional 1 D spectra
L
“ 9T/ RFA/ R)

L
R

for the direct and inverse cascades, respect vely. A most important externa bé;arneter
influencing the shape of the normalized spectra is the loca baroclinic Rossby radius of
deformation. As aresult, spectra (9) exhibit arather strong, monotonous dependence on
the geographic latitude and no dependence on the spectral fluxes. This property will be
exploited in our analysis of atimeter data.

2.4 Limitations of present theory

By permitting an unambiguous specification of the wavenumber scale separating the
two inertial subranges, the case of tidal forcing is unique. However, the tidal forcing is
not the only possible, and probably not even main, mechanism of baroclinic 1G wave
generation. Consequently, the relative extent of the inertial subranges and their separation
scale are generally unknown. Moreover, the energy and action fluxes, Q and P, are not
necessarily conservative. If, for instance, baroclinic 1G waves are radiated by eddies or
currents (via the instability of vertical motions with respect to gravity-mock perturbations),
the external forcing would occur in a wide spectral band, resulting in a divergence of
spectral fluxes in the wavenumber space,

Spectra (6) - (8) arc based on a rather general, abeit heuristic, theory of wave
turbulence in scale-dependent systems (Glazman, 1995, 1996). Its central assumption is
the locality of resonant wave-wave interactions in the Fourier space. ‘I’ he theory ignores
possible interactions among various baroclinic Inodes, and it does not account for non-local
encrgy transfer in the high-w avenumber range of the spectruim. 1 ndeed, in the short-wave

[imit the dispersion relationship (1) reduces to the acoustic-type law o = kc. In this
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regime, the wave nonlinearity leads to the formation of “shocks’ resulting in internal wave
breaking and generation of small-scale turbulence, hence in an essentially nonloca energy
transfer to smaller scales. The weakly-nonlinear version of the IG WT theory is not
appropriate for this range.

In view of its many simplifications, the present theory is not expected to be in perfect
quantitative agreement with field observations. We do, however, expect it to correctly
describe basic trends such as the rate of spectra roll-off and the dependence of the

spectrum on externa factors - especially on the geographic latitude entering R.

3. Effect of “noise” on altimeter-based spectra of SSH variations

As was noticed by many investigators, the characteristic behavior of the SS11 spectrum
at k > 0.1rad/km is given by Fi(kX) - k-1 (Gaspar and Wunsch 1989; Le Traon et al. 1990,
1992, 1994). As we mentioned earlier, the direct energy cascade may well be responsible
for this regime. 1n this Section we show that error noises of altimeter measurements, such
as spatial variations of the electromagnetic bias, radar propagation in the troposphere
influenced by water vapor fluctuations, the instrument measuring noise, etc., offer an
alternative (and rather convincing) explanation of the k-1 regime. This power law is
known as the “shot noise” spectrum: b(k) =Bk-1.

1et 62noise be the component of the total SSH variance due to the noise. Since the

total r.m.s. error of SSH measurements is presently believed to be about 5 cm (Fu et al.,
1994), wc shall use 62h0ise = 10 cm’as a crude estimate of the noise level, and employ the
shot noise model for scales10 to 100 km. The snort-scale boundary of this:ange is near
the Nyquist frequency of the Topex/Poseidon altimeter measurements, and the large-scale
boundary corresponds to the scale of wind fetch variations in the open ocean which control
the cm. bias fluctuations. Thus, the noise-relatccl component of the 1 D spectrum is

modeled as
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k) = {Bk“‘ forky >k>ky
0 otherwise
The amplitude factor B is estimated by integrating (10) over k, which yields
B= 02,,0156 /In(ky ! K) = 4cm” Addine bfk) to the 1D version of the noise-free spectra
(6) - (8) completes our simple model of IG WT in the presence of the small-scale noise.

Of particular interest is the case when the spectrum is dominated by the inverse cascade.
Thisisillustrated in Fig. 6. Also shown are three power laws approximating the spectrum
in different sub-ranges. Comparison of this, noise-affected, spectrum with the noise-free
spectrum in Fig.2 indicates that at wavenumbers above 0.01 rad/km, the inverse cascade
spectrum is easy to confuse wit% spectrum (7). One important difference is the degree to
which the Rossby radius influences these spectra: variations of R have agreater effect on
the inverse cascade spectrum than on the direct cascade spectrum. In Section 6 we
demonstrate that the inverse cascade spectrum with noise, Fig. 6, describes the observed
R-dependence more faithfully than do spectra (6) and (7).

In summary, the characteristic features of 1G W'l' to be detected in SSH spectra at mid-
latitudes include: a very slow spectral fall-off (at the rate near k-0-4) at wavenumbers below
-0.01 rad/km; an accel erated spectral fall-off (at the rate near k-3) in the range -0.02.-0.08
rad/km; arelatively slow spectral fall-off (at the rate near k'1) at wavenumbers above -0.1
rad/km. This “three-segment” shape was pointed out by I.eTraon et a. (1994) as typical
of atimeter-reportecl spectra at mid latitudes. As one of most prominent features of 1IGWT
spectra we also indicate their strong dependence on the baroclinic Rossby radius of

deformation - expressed as the “blue” shift of the entire shape with the geographic latitude

increasing poleward.

4. Separation of motions with different time scales
Generally, observation of 1G wavesis aformidable task, for it calls for accurate,

simultaneous, high-spatial-density, measure.mcnts over large ocean areas - many hundreds
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kilometers in extent. The amplitude of SS11 oscillations due to long internal waves is only
about 10°times that of the thermocline depth oscillations, hence is under 10 cm, Whéreas
the accuracy of SSH measurements by the T/P atimeter is about 5 cm in terms of the r.m.s.
error. An intense background of diverse dynamical processes further complicates the
problem. In order to extract information on baroclinic 1G waves, one has to start with
filtering out all Rossby wave modes and other types of geostrophic and quasi-geostrophic
(“slow™) motions. As discussed in this Section, this can be achieved by combining 11D
spectra of SSH variations aong altimeter groundtracks with 2D spectra of SSH variations
between tracks. The procedure exploits the large intrinsic difference in the tempora
autocorrelation radii of quasi-geostrophic versus gravity-mode oscillations.

The spatio-temporal autocorrelation function of altimeter-observed SSH field, on the
assumption that SSH variations caused by slow and fast motions are uncorrelated, can be
presented as a sum of two components

W(r, 1) = Wyjo, (r, 1) + W, (r,7) (11)
For t> 1, where T* is the characteristic autocorrelation timescale of the fast processes,
W(r,1)= W, (r, 7). This dlows one to separate motions with different timescales.
Furthermore, baroclinic 1G waves are not the only contributor to W, (r, 7). Being
interested in W; (r, ‘c), we shall treat other fast components as “noise” and assume them to
be uncorrelated with 1G wave oscillations: W g, (r, 1) Wic(r, 1)+ W, ise (r,T) .
For afew exceptions discussed in Sects. 6 and 7, W, ;. (r, 1) should be appreciable, only
at sufficiently short temporal and spatial lags. In particular, the contributionto W, ;... (7, T)
of barotropic gravity waves is negligible for time lags 1 exceeding the temporal
autocorrelation radius of this wave process (while r may be as small aswc please). This
timescale is practically a few wave-periods long, hence is about an hour. Similarly, when
the spatial lag exceeds the autocorrelation length of altimeter measuring errors, contribution
of measuring error noises becomes negligible compared to WIG (r, 1) a any t imc 1a?,.

These properties arc exploited in our data analysis procedure.
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4.1 SH spatial variations along and between altimeter groundtracks

SSH is sampled by the T/P altimeter every 6.4 km along agroundtrack, and a 1000 km
segment of a groundtrack is covered in less than 3 minutes. Due to this, virtually instant
sampling feature, IG WT (representing the fast component of SSH variability) is detectable
in the 1D spectra and autocorrelation functions estimated based on individua satellite
passes. However, these functions also contain information on slow motions.

The situation with 2D autocorrelation functions and spectra is different. To estimate
these functions, one must simultaneously use SS11 measurements from several (ascending
as well as descending) passes within the ocean area of interest (such as, for example, a 10
by 10 degree square area) - as suggested in (Glazman et al., 1996a; thereafter abbreviated
as GFG'96). The ascending (or descending) 1/P altimeter groundtracks are about 300 km
apart, and the orbit-repeat cycle is about 10 days. Time differences between SSH
measurements sampled on different satellite passes within a single orbit-repeat cycle range
from several hours to 10 days. Therefore, we can select pairs of SSH aveasurements with
time differences greater than the temporal autocorrelation radius 1 of 1G wave oscillations.
It is easy to show that T* = (21t/wp)n Where @o > f and 2 < n< 10, hence ‘c* is small by
comparison to the timescale Of quasi-geostrophic motions. The 2D autocorrelation
functions (and the resulting spectra) based on such measurements are affected only by the
dow motions. Combined with the. 1 D “aong-track” spectra, these 21D spectra alow one to
extract information on the fast SSH component.

The joint analysis of aong-track and between-track spectra is possible only if the
resolution of the. 2D analysisis comparable to that of the 1D analysis. “I’his i-an extremely
difficult requirement. The 21> spectral analysis technique developed in GFG'96 alows
one to resolve spatial scales as short as 70 km.

4.2 Detection of baroclinic IG WJ' in satellite altimeter measurements

The data analysis procedure includes the following steps:

Step 1. Estimate the 1 D (“along-track™) spatia autocorrelation function,
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W(r) = <n(s+rm(s)>, (12
using atimeter measurements on individual satellite passes within a given ocean area.
Because both n(s) and n(s+r) belong to the same satellite pass, their time difference is
ignored. By the spatial lag r we understand here the distance between two points on a
groundtrack, and sis the distance alongtrack from some point of reference. The products
are binned by values of r. Although the data from ascending and descending passes are
used separately, function W(r) is eventually obtained by averaging products n(s+rm(s)
from all passes within the area under consideration. Because ascending and descending
passes have different orientation, the averaging suppresses effects of the SSH fields
an isotropy. The averaged products represent an estimate of the 1 D autocorrelation
function for a linear section of an equivaent isotropic spatially-homogeneous random field.

The corresponding 1D spectra were estimated as ki1 of W(r) aswell asdirectly from
the SSH data in the usual manner (e.g., 1.eTraon et a., 1990). Both approaches yielded
virtually the same results. The directly obtained spectra were then improved in the high-
wavenurmber range by correcting for the effect of discrete sampling (every 6.4 km) of the
SSH field on individual satellite passes. To this purpose, we divided the spectrum estimate
by (sin(kL)/k1.)2 where L. = 6 km.

Step 2. Estimate the 21.) spatial autocorrelation function, Wgjew(r), based on SSH
measurements taken at |east two (but no more than 10) days apart. Using datafrom
different pairs of satellite passes, wc calculate the mean of all products M(x-+r,t+ Atyn(x,t)
for pre-set bins on the r-plane. Actual time differences At between SSH measurements
depend on the satellite orbit configuration and on our choice of satellite passes. Since
n(x+4r,t+ At) and n(x,t) belong to different passes, time lags At are typically much greater
than the period of 1G waves. Consequently, At > 1* and the influence of 1G waves on
Waow(r) is negligible. Limiting At by five (or even 10) days, we ultimately ignore time
differences At and average all SSH products as if n(x-+r,t+At) and N(x,t) were measured

simultaneously. Apparently, the resulting Wgjow(x) is suitable for analysis of quasi-
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geostrophic motions because their characteristic timescale is aways much larger than our
At.
Step 3. Reduce Wyjow(r) to the 1 ID form compatible with W(r), by averaging Wsjow(r)

over the azimutha angle:

Watow (1) = (1] 23) [ Wy, (,0)d0 (13)

It is easy to show that, for a statistically isotropic SSH field, the resulting 1D function has
the same meaning as the autocorrelation, W(r), of SSH oscillations along a straight line.
However, arealistic SSH field is not statistically isotropic. Hence, the compatibility of
(12) and (13) may not be as high as desired. Finally, the difference between (12) and(13)
represents the spatial autocorrelation function of the fast motions:
Wiase(r) = W(r) - Wyiow(r) (14)

Except for Step 3, details of our approach (including error analysis) are given in GEG'96.

The wavenumber spectra F(k) and Fgjow(k) corresponding to W(r) and Wyjow(r) are
obtained as FFT of the autocorrelation functions.  1n doing S0, we use the Hanning
window to alleviate adverse effect of the finite range of r. Finally, the inverse Fourier
transform of the spectrum of the difference, Fragi(k) = F(K) - Fs1ow(k), Was compared to
Wiast(r) Of (14) to ensure the correctness of the numerical scheme. Examples of functions
W(r), Wiow(r), Weasi(r) and their Fourier transforis are illustrated in Figs. 9 and 10.

4.5 Reduction of spatial noise

Small-scale surface roughness fluctuations cause rapid oscillations of the measured
SS1HI because they result in short-scale variations of the atimeter sea state bias (e.g.,
Branger et al., 1993). This and other factors of spatial noise are responsible for a sharp
peak in the autocorrelation function W(r) in the vicinity of r=0. However, this noise-
related peak can be removed by extrapolating the behavior of W(r) from larger scales -
dominated by the “signal of interest” - into the small-scale range dominated by noise.. In
doing so, one must respect a fundamental property of the autocorrelation function of a

spatially-homogeneous random field - the requirement that W(r) behave as




W(r),_o=~Wo-Cr? | (15)
where Wy and C are constants. Thus, the autocorrelation function at short scalesis
replaced by parabola (15) whose coefficients are determined empirically using values of
W(r) at sufficiently larger.

To determine Wg and C for the along-track autocorrelation function, we used W(r)
from the range 20< r <40 km. The same task for the autocorrelation function of slow
motions, Wjow (1), requires r in the range 60 to 100 km because the spatia sampling of
“between-track” SSH values is much coarser than that of the along-track sampling. In

either case, constants W and C are determined by a least-square fit.

5. Analysis of baroclinic wave motions

In this Section wc present a few sample calculations to illustrate the approach. The
focus is on the physical meaning and correct interpretation of the statistical quantities

involved.

5.1 Rossby waves

Although our main task requires only the spatial autocorrelation Wgjow(r), we undertook
a small additional effort and estimated a more general, spatio-temporal autocorrelation
function Wow(r,1), using the technique described in GFG'96. Apparently, Wow(r) =
Wiiow(r,0). Function Wyjow(r,1) facilitates our present analysis of Rossby waves and
affords and insight into the physical causes of SS11 variations reflected in Wow(1).

A few examples of Wiiow(r) and Wgjow(r,T) are given in GEG'96 along with analysis
of statistical errors in our estimates. Presently, we illustrate three secticns of Wow(r,T)
for a10 by 10 degree surface patch centered at 300S and 50 (over the Walvis Ridge),
ig. 7, and for another patch at 30°S and 25°W, Tig. 8. The following review facilitates
correct interpretation and utilization of these plots.

The 3D autocorrelation function of a wave field is related to its 21 ) wavenumber

spectrum, F(k), by
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W(r,1) = [ pk)ekr-ctdtgk (= W(r-ec1), (1
where c(k) is the wave phase velocity. The last equdlity is valid either for non-dispersive
(i.e., c(k)=const) or purely monochromatic (i.e., F(k) - 6(k-kg)) waves. The right-hand
side of (16) means that the main maximum of the 3D autocorrelation function appears as a
"jet" (with fuzzy boundaries) passing through the origin, Its orientation in the r-t space
yields the vector of the wave phase velocity: ¢ = r(z)/ T wherer(t) is the position of the
autocorrelation maximum at time 1. As(r-ct) increases, W(r-ct) reaches its local minima
and then attains secondary maxima. Asshown in Figs. 7 and 8, plane sections of W(r-
¢T) resemble a washboard.

By definition, the phase velocity vector is c=w/k. Thisisidentical to ¢ = ok / k>
where k is the magnitude of the wavenumber vector. Dividing the numerator and
denominator of x- and y-components of ¢ by k2 and k2, respectively, the orthogonal
components can be presented in the form

L 0k O Olky

C, =—-— = —Cos 0, cy=- ---". =--8in0, 17
Y1+ tah ¢ k ¢ 71+ cot'gk ? -

where tan ¢ =k, / k. If the meridional component of the velocity vector is small
compared to the zonal component, i.e., ¢ — 0, the first equation of (17) reducesto

¢y =0/ k,. Letus show that the meridional (ry=0) section of the autocorrelation function
yields o/ k,.. As follows from (16),

Wre,0,1)= JFy (ke ksl ) g, = W(r, (W /k)T) (18)
where Fy (k) = [ #'(k)dk, isthe 11 spectrum, and the last equality is valid under the same
condition as the rightmost part of ( 16). According to (18), the tilt r, / t of the mainridge
of W(r,,0,1) (observed in the top panel of l'igs.7 and 8) equals » / k. - Therefore., under
the condition (k,/ kx)2 « 1, function W(r, ,(), 1) yields an estimate of the zonal
component, cy, of the wave speed. If, however, the meridional component of the velocity
vector is appreciable, the difference between o / k, and cx may become quite large. For

instance, for waves propagating at +450 away from the zonal direction, "speed”r, / 1
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estimated based on W(r,, O, 1) is twice the actua cy. The azimuthal angle ¢ for the case

illustrated in Fig. 7 is about 559. Therefore, the meridional component of the wave vector
exceeds its zonal component. This has a simple explanation as a result of Rossby wave
poleward refraction caused by a rapid decrease of the Rossby radius of deformation away
from the equator. Many patches in the Atlantic show patterns similar to those in Figs.7 and
8. Therefore, using only the meridional section, ry=0, of the autocorrelation function -
upper panel of Figs.7 and 8- would result in a substantial, systematic overestimation of the
Rossby wave speed - by a factor of 2 or greater.

The same overestimation of the zonal component takes place when one uses a more
conventional technique of Rossby wave analysis - the longitude-time plots of SS11
variation (e.g., Chelton and Schiax, 1996). Indeed, the characteristic tilt x/t of the
elongated features seen in those plots yields avky because those features are treated by
Chelton and Schlax (1996), as well as by many other authors, as phase isolines (i.e.,
“wave crests’ and “troughs’) of monochromatic long waves propagating strictly westward.
Another common error of this analysis is the interpretation of the distance, L.x, between
neighboring “wave crests’ on the x axis as the wavelength of Rossby waves. The actual
wavelength, A, is related to this distance by A =: 1.5 cos ¢, hence is only about one half (or
even less) of the reported value.

In generd, oceanic Rossby waves arc neither monochromatic nor do they propagate
westward. The broad-band nature of the wave spectrum is especially well pronounced in
the bottom panels of Figs.7and 8. The short-scale region of W(r), confined by an ellipse
centered at the origin and whose major axis is near horizontal with the half-length about
200 km, corresponds to a system of relatively short-scale variations. These include short
Rossby waves. The larger-scale portions of W(r) - visiblein Fig. 7 as chains of tilted

elongated “hot” blobs indicate the presence of long Rossby waves moving, on the average,

in the soutll-west direction. This is confirmed by the middle panel - W(0,ry, 1) - of Fig.7.

The W(r) and W(O, r,, 1) of Fig.8 do not show such a clear meridional component of the
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long Rossby wave speed. Rather, these pictures display interference patterns caused by
severa wave systems propagating in different directions. We thus conclude that the
Rossby wave field contains waves of many different scales propagating in different
directions. ‘I’ he strong refraction of Rossby waves caused by the latitudinal variation of the
Rossby radius of deformation makes it impossible for waves generated at the eastern
boundary of an ocean to cross the entire ocean basin and reach its western boundary.
Therefore, the corresponding concept of the “transit time” (e.g., Chelton and Schiax, 1996)
appears to be devoid of geophysical significance.

Rossby waves can be viewed approximately as non-dispersive only if kR << 1. At the
latitude of Figs.7 and 8 (i.e. at 309S), the 1st baroclinic Rossby radius of deformation is
about 40 km (e.g., Houry et a., 1987). Therefore, the last equality in (16) is relevant
only for wavelengths substantially greater than 1000 km.  Our Figs.7 and 8 do not rule
out the existence of such long wave.s, although they do not show them. What these plots
show very clearly is that the most energetic components of the Rossby wave spectrum
belong to the wavelength range 200 to 500 km -- too short to interpret ¢ in (16) as the
phase velocity vector. The correct interpretation of the “mean wave propagation velocity”
derived based on the tilt of the ridges in Figs. 7 and & requires numerical analysis of the
integral in (16) - hence, a detailed knowledge of the wavenumber spectrum F(Kk) of quasi-
geostrophic motions. This task is far beyond the scope of the present work.

S.2 Inertia-gravity waves

As explained earlier, estimation of 1G W'I" spectra involves the use of 1D autocorrelation
function Wgjow(r) obtained from Wy (1) by angular integration (1 3). To eliminate the
influence of short-scale noises, we replace Wgjow(r) in the vicinity of the origin by parabola
(15) and interpret W as the component of the total SSH variance associated with quasi-
geostrophic (including Rossby waves) motions. Examples of this “filtered”

autocorrelation function are shown as dotted curvesin Pane] A of Figs. 9 and 10.
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The 1 D autocorrelation function, W(r), of SSH oscillations along altimeter
groundtracks isillustrated by the solid curve in Panel A of Figs. 9 and 10. Comparison of
the Fourier transform of these functions, Panel B, with the 11D wavenumber spectra
estimated by Le Traon (1992) based on Geosat altimeter observations (and by 1.e Traon et
al. (1994) based on Topex/Poseidon measurements) shows very good agreement. The
difference between W(r) and Wow(r) is shown by the dashed curve in Panel A of Figs. 9
and 10.

Panel B of Figs. 9 and 10 presents 11D wavenumber spectra related to the curves in
Panel A. The SSH variance component due to the fast part of the SSH field is estimated as
coefficient Wg in (15) for Weasi(r). In Sects. 6 and 7 we show that in most cases the
spectra of the fast motions agree with the IG WT theory predictions. Therefore, we
interpret Wo!/2 as the characteristic amplitude of baroclinic 1G waves and denote it by oG
in the subsequent discussion. Although the snort-scale asymptotic of Weas(r) is not
presented in Figs. 9 and 10, an estimate of W (shown by the black circle on the vertical
axis) can be inferred by visual examination of the dashed curves in Panel A: we find W by
extending the larger-scale behavior of the dashed curves to the small-scale region. “I’he
distribution of C1G for the Atlantic is presented in Fig. 11, and Fig. 12 illustrates spectra of
the fast SSH component. These Figures arc discussed in detail in Sect. 7.

The reader may notice that the (low-pass filtered) autocorrelation functions, Wgjow(r),
and spectra of quasi-geostrophic motions for the two ocean regionsin Figs. 9 and 10 are
rather similar. However, in the case of the fast component (dashed curves) these
characteristics arc quite different: the characteristic amplitude of the fast mot’~ns in the

eastern part of the Atlantic is much greater than that in the central part where it is

comparable to the amplitude of quasi-geostrophic motions, OR.
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6. The inverse problem of barocliniclG WT

In order to justify our interpretation of Fryg(k) asthelG W' spectra, we must shbw that
these spectra agree with the predictions of Sect. 2. As discussed earlier, the IG WT
spectrum depends on the local Rossby radius of deformation and other externa factors.
Owing to these-dependencies, Frast(k) must exhibit geographic and seasonal variations.
Focusing our attention on the dependence of the spectrum on the Rossby radius of
deformation, we shall now examine geographic variations of the observed spectra and
compare them with theoretical trends.

Typica vaues of R for the North and South Atlantic are plotted in Fig. 13 based on the
analysis of water density profiles by Emery et al. (1984) and Houry et a. (1887). As
follows from (3) and (4), the range of possible values of R is determined by the Brunt-
Viisdla frequency and ocean depth: NH should remain within reasonable limits - such that
the equivalent depth is constrained by 0.5 <h < 1.0 m. The corresponding bounds on R
are shown in Fig. 13.

As a smple way of comparing theoretical and observed spectra, one can treat R in (6)-
(8) as an adjustable parameter and determine its “experimental” value by fitting the
theoretical spectrum to the experimental spectra obtained for each patch of the ocean
surface. In order to eliminate the influence of the unknown energy and action spectra
fluxes, Q and P, anti obviate a difficult question about the specific values of the
proportionality coefficients o and g, we shall use spectra in the normalized form (9).
Ultimately, the values of R inferred by this analysis will be compared to the actual
baroclinic Rossby radius of deformation known from in situ measurements.

As a measure of the distance between theoretical and experimental spectra we employ:

Ky >exper 2
A(R, V)= | [Fheor (ky— FyPT (K dk (19)
K

a

where the tilde over F; points to the use of normalized spectra. The upper limit issct to Kb

= 3/R to reduce the influence of irrelevant sinall-scale processes (“noises’). Selection of
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the lower limit depends on our choice of the spectral model. To employ the direct cascade
model (7), we select K = |/R. This choice minimizes the influence of the inverse cascade
range which may be present at k < K_. If the spectrum is assumed to be dominated by the
inverse cascade at all wavenumbers below Kb, the lower limit of integration should include
large scales; hence we choose Ka=0.4/R. Thisisthe lowest wavenumber for which an

experimental spectrum is deemed to be reliable: at wavenumbers below this limit, the
estimates are distorted due to the limited size of an ocean area (10 by 10 degree) under
consideration (GFG'96). The fact that both the integration limits and the spectrum F{hc‘”
depend on an unknown parameter R complicate the numerical integration.

If the wave turbulence is weak (hence, v = 4), the problem reduces to minimizing the
1 D function A(R). An example of A(R) is provided in Fig. 14. In general, for an arbitrary
degree of wave nonlinearity, v should be treated asan unknown parameter in the direct
cascade range. The simplest method of minimizing (19) in this case is to estimate A(R,v)
onagrid of R and v values and then find a point at which A attains its minimum. All such
calculations have been conducted for 55 patches in the Atlantic.. Figure 15 illustrates the
results for v based on the direct cascade model (7).

In order to check which 1G WT model fits the observed spectra best, we conducted
calculations separately - using the direct cascade model (7) for the high-wavenumber range
and the inverse cascade model (8) for a much broader range of wavenumbers. This
experiment showed that the direct cascade modelyields best results for tropical latitudes,
while the inverse cascade model best agrees with observations at latitudes greater than 20
degree. Consequently, the values of R used in Figs.13 and 16 are based o:.two different
models: in the renal bands right outside the equatorial waveguide, R has been determined
based on (7). At al other latitudes we used (8). Using (7) for mid-latitudes yields, on the
average, 25 percent greater values of K than those presented in Figs. 13 and 15. Using
(8) for tropical regions lcads to an average undcrestimation of R by about 25 percent. The

limited success of the direct cascade model is probably due to the fact that most of the
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high-wavenumber range of observed spectra is dominated by noise. The appropriate
model for this situation isillustrated in Fig. 6.

Unfortunately, not al of the spectra in Fig. 12 permit positive determination of R: the
1G energy level in some regions is near the measuring noise level (F(k) <103 cm3/cpkm)
and some spectra are apparently dominated by factors other than 1G WT - their shape does
not fit any simple description suggested either by 1G WT or by 2D quasi-geostrophic
turbulence theory. Such cases are discarded from further analysis and the corresponding
patches in Figs. 15 and 16 are left blank. The equatorial region is excluded because the
theory presented in Sect. 2 does not apply to (essential y 1 D)equatoriall y-trapped waves.

Discussion of the results for the Atlantic is given in the next Section.

7. Application to the Atlantic Ocean

Atlantic ocean offers the full range of external conditions to be found in other regions of
the World Ocean. We extracted from the 1/p Geophysical Data Records (GDR)
observations for cycles 15 through 68 covering 540 days of the 1/P mission. The
preparation of T/P data and details of its statistical analysis are described in G1G'96. The
calculations have been carried out for 55 patches, each 10 by 10 degree in size, in the
Atlantic ocean. The mean latitudes of the 10 by 10 degree patches in North Atlantic were set
at 15, 25, 35, 45 and 55 degree N. For the South Atlantic we chose central latitudes at 10,
20, 30, 40 and 50 degree S.

7.1 Field of baroclinic IGWT'
"The amplitude of fast SSH variations, Wq!/2, based on W,q(r) isshow:. in Fig. 11.
The 1D spectra, Frast(k), of fast motions for the North and South Atlantic areillustrated in

Yig. 12 separately. Since in most cases the observed spectra agree with (7) and (8), we

interpret Wo!/2 as the characteristic amplitude of baroclinic IG waves, and denote it by o1G.
“I"he highest energy of JG WT is observed in the Gulf Stream region where 1G waves are

likely to be generated by the baroclinic instability of the vertical, quasi-geostrophic motions
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with respect to gravity mode perturbations. This supposition finds further confirmation in
the South Atlantic where a relatively high level of 1G WI' is observed around the 30
latitude westward of 200W. This area is characterized by a very large meridional shear of
the mean currents due to the passage of the Antarctic Circumpolar Current (ACC) and the
convergence of the Brazil and Falkland currents in the western end. The highest amplitude
of IG waves is observed at the southern tip of Africa where the powerful Aghulas current
generates north-west-propagating eddies and, as we anticipate, radiates 1G waves. Since
the baroclinic Rosshy radius (Fig. 16) derived for these regions takes on reasonable values
(as compared to in situ measurements), we believe that the observed spectra of the fast
motions are dominated by IG WT rather than by the fast moving eddies. The relevance of
1IG WT in such regionsis further confirmed by the increased values of v (see Fig. 15)
which correlate with the increased amplitude of fast motions. The lowest amplitude of 1G
waves is observed in the tropical region of the. South Atlantic. The characteristic values of
oG in the regions away from strong currents vary between 4 and 6 cm, corresponding to
about 50 m for the amplitude of the thermocline depth oscillations.

Figure 16 provides a crude map of the 1st baroclinic Rossby radius inferred as explained
in Sect. 6. Averaging this radius within zonal bands yields the latitudinal dependence of R,
Fig. 13. Wefind that, while our inferred R exhibits the correct trend (decreasing poleward
as - 1/sin(0)), its values tend to be larger than the in situ results (triangles in Fig. 13) of
Fimery et a. (1984) and Houry et a. (1987). This discrepancy may be caused by over-
simplifications of the present theory of 1G W'I' - as discussed in (Glazman, 1996) and/or
by various shortcomings of our data analysis technique.

Furthermore, the present poor understanding of the driving mechanism of 1G W' does

not allow us to specify the boundaries of the direct and inverse cascade ranges. As aresult,
in place of a composite spectrum containing both branches [introduced in (Glazman,

1996)], wc had to employ in Sect.6 “partial” spectral models appropriate only within

limited wavenumber subranges.
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7.2 Quasigeostrophic motion

As suggested in Sect. 7.1, baroclinic IG WI' may receive, at least part of, its energy
from the vertical component of oceanic motions, This suggestion finds an indirect
confirmation in the our work,

In Fig. 17 we present the characteristic amplitude, Wq!/2, of the dlow motions
dominated by baroclinic Rossby waves, In the vicinity of the Gulf Stream, ACC, and
Aghulas Current systems, the amplitude of the slow motions s, of course, at its highest;
while in the subtropics and other regions away from strong currents, the amplitude is
vanishingly small. These spatial variations of Wqtend to correlate with variations of the IG
WT amplitude in Fig. 11, and with the degree of the IG wave nonlinearity quantified by v
inTig. 15. This leads to a conjecture that at least one of the sources of baroclinic IG wave
energy is the 2D quasi-geostrophic turbulence attaining its highest levels in the regions of
large lateral shear of the ocean current velocity. The closest analog for this mechanismis
the well known generation of acoustic pressure waves by the 3D turbulence. The
divergence of the horizontal velocity field causing thermocline depth oscillations in the case
of 1G waves is similar to the divergence (at sufficiently high frequencies) of the 3D velocity
field causing sound waves.

The fact that the IG WT amplitude remains finite in many regions where the amplitude
of the sow motionsis vanishingly small (e.g., in the zonal band centered at 20°S) points to
the presence of other possible sources of 1G WI' energy - not related to the 21D vortical
motion. The scattering of barotropic tides on ocean floor features has long been viewed as
anatural mechanism of baroclinic wave generation. Many spectrain Fig. 12 contain alittle
bump (or other kind of irregularity) at wavenumbers corresponding to the barotropc tide
frequency - as predicted by eq.(2) and illustrated by boxes at the curves of Figs. 1-6. This
feature of wave spectra maybe associated with the tidal forcing. While we cannot
presently assess the contribution of the tidal mechanisim to baroclinic 1IG wave energy, we

remind the reader that the estimates of the Kolmogorov constant, cq, and spectral flux Q
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presented in Sect. 2.2 are consistent with our suggestion that a portion of Q may be

contributed by barotropic tide.

8. Summary and Conclusions

Our analysis of the SSH field in the Atlantic has demonstrated that the fast component
of SSH variations (with the characteristic timescale under 1 day) makes a substantial
contribution to the total SSH variability. Its amplitude on the average is about 5 cm, and in
some regions it exceeds 15 cm. These fast SSH oscillations are characterized by
wavenumber spectra whose shape and dependence on external factors (the first bavoclinic
Rossby radius of deformation) are in good agreement with theoretical predictions for
baroclinic IG WT. We thus conclude that the fast component of the observed SSH signal
represents surface manifestation of long nonlinear internal waves of the first baroclinic
mode. The degree of these waves nonlinearity islow for most of the Atlantic. However,
in regions of an intense generation of baroclinic1G WI’ - where their amplitude is well
abpve the average - the wave nonlinearity tends to be high, attaining the regime of saturated
spectrum Fj I(K) - k-3 in some of the regions,

The high-wavenumber range of atimeter-measured SSH spectra - atk20.008 cpkm -
is dominated by intervening factors, such as atimeter measuring errors. The effect of such
factors is well represented by a simple model of shot noise, F1 (k) = Ilk'1. The noise
obscures manifestations of the direct energy cascade in the high-wavenumber range of the
spectra, thus reducing usefulness of our equation (7) for describing the observations. At
wavenumbers below k = 0.007 cpkm, the observed spectra are best represen::d by the
theoretical model for the inverse cascade range.

The large-scale quasi-geostrophic motions are dominated by baroclinic Rossby
waves. Inregions of strongly sheared mean currents (Gulf Stream, Aginlas current,
ACC), this component of the SS11 field attains its highest amplitude. The observed

correlation between the high amplitude of slow motions and the high amplitude of 1IG WT
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points to the important role played by the vertical oceanic motions in the generation of
baroclinic G waves. Analogy with the generation of acoustic waves by the classical 31D
turbulence is rather transparent.

Barotropic tides scattered by ocean floor topography are pointed out as an additional
source of baroclinic wave energy. In regions away from major ocean current systems, this
mechanism may become dominant. The fact that the inertial cascade of wave energy in
baroclinic IG waves implies eventual dissipation of energy in the small-scale range of the
spectrum points to baroclinic IG W'T as a factor of global dissipation of ocean tides.

Baroclinic Rossby waves are characterized by a wide range of scales and propagation
directions. While the zonal component of the wave velocity vector is predominantly
westward (except for the ACC region where the waves are advected eastward by the mean
ocean current), the meridional component varies strongly and usually is greater than the
zonal component. In other words, the mean direction of Rossby wave propagation is far
from zonal. Therefore, the conventional view of Rossby waves as being generated at
eastern boundaries of ocean basins and then propagating across the basin to reach the

western boundary isin strong disagreement with our results.
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CAPTIONS FOR FIGURES

Figurel. 1 D spectrum, Fq(k)=ekF(k), of SSH spatial variations due to weak
baroclinic IG wave turbulence dominated by the direct energy cascade. Here, E = 10-6,
and F(K) is based on (6) with o= 10, H;=500 m, and ¢ = 2.5nvs. Solid curve: ©=20
deg, R=45 km. Dotted curve: ©=35 deg, R=27 km. Dashed curve: ®=50 deg, R=20

km. Dash-dot curves provide power laws for reference. Boxes at the curves designate

wavenumber k-

Figure 2.1 D spectrum, F;(k), of SS}H spatial variations due to strong baroclinic 1G

wave turbulence (v= 10) dominated by the direct energy cascade. F(k) is based on (7) with
ay@'9 ~.0 02 Other notations are as in Fig. 1.

Figure 3. 1D spectrum, F(K), of SSH spatial variations due to baroclinic IG wave
turbulence dominated by the inverse cascade of wave action: F(k) is based on (7) with

same parameters as used for Fig. 1. Other notations are also asin Fig. 1

Figure 4. Non-dimensional 1 [ spectrum /4 (k) of SSH spatial variations due to weak

baroclinic IG wave turbulence dominated by the direct energy cascade. Based on (6) and

(8) with the same parameters and notations as in Fig. 1.

Figure 5, Non-dimensional 1] spectrum /) (k) of SSH spatial variations duc to weak
baroclinic IG wave turbulence dominated by the inverse cascade of wave action. Based on

(7) and (8), with the same parameters ancl notations as in Fig. 1.
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Figure 6. 1D spectrum, F,(k), of SSH spatial variations due to weak baroclinic 1G
wave turbulence dominated by the inverse cascade of wave action, in the presence of error

noise. Based on (7) and (9), with the same parameters and notations asin Fig. 1.

Figure 7. Three sections of the autocorrelation function W(r,t) for a10 by 10 deg area
of the South Atlantic centered at 30°S, SOF .

Top panel: W(ry,0,7). Middle panel: W(0,ry,7). Bottom panel: W(ry, ry,0).

Figure 8. Thesame asFig. 7 but for a 10 by 10 deg area of the South Atlantic centered
at 30%, 250w .

Figure 9. Estimation of 1G wave spectra for a 10 by 10 degree patch centered at 30°S
and 5OF (in correspondence with Yig.7):

Panel A: 1D autocorrelation functions: Solid curve: W(r) given by eq.( 12) for along-
track SSH variations, Dotted curve: Wow(r) obtained from Wy ,w (1) by angular
integration (13). Dashed curve: Wiasi(r) = W(r) - Wisiow(r). Black circle: 621G found as
W in @15) for Wagt(r).

Panel B: 11D spectra corresponding to 113 autocorrelation functions in Panel A.

Figure 10. ‘I’he same as Fig.9, but for the surface patch centered at 30°S and 25°W (in

correspondence with Yig.8).

Figure 11. Square root, )¢, of the SSH variance component due to fast motions,

estimated as W72 in (15) based on Wraq(r). “I’his quantity is interpreted as the

characteristic surface amplitude of baroclinic IG waves.
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Figure 12. 1D spectra of baroclinic IG WT obtained based on T/P atimeter data as
explained in Sect. 4.2. Panel A: North Atlantic. Panel B: South Atlantic. The units,
scale and range of the vertical and horizontal axesare the same asin Panel B of Figs. 9 and

10. The lon and lat coordinates of a patch are provided on top of each plot.

Figure 13. First internal Rossby radius of deformation averaged within zonal bands and
referenced to geographic latitude. Triangles: based on analysis of the observed density
stratification by Emery et al. (1984) and Houry et a. (1987). Solid curve: based on €4s. (3)
and (4) with h = 0.5 m. Dashed curve: based on €9S. (2) anti (3) with h = 1.0 m. Solid

dots: inferred from T/P altimeter measurements as explained in Sect. 6.

Figure 14. Function A(R) defined by ¥q. (19) for £44“°" dominated by the inverse

cascade of wave action (8).  Here wc usc the experimental spectrum 717" for a surface

patch centered at 159w, 20°S.

Figure 15. The effective number, v, of resonantly interacting wave harmonics derived

from the spectra of Fig. 10 as explained in Sect. 6.

Figure 16. The baroclinic Rossby radius of deformation derived from the spectra of Iig.
12 asexplained in Sect. 6.

Figare 17. ‘I’ he characteristic amplitude of quasi-geostrophic motions, W'/, derived

based on Wi, (1) asexplained in Sect. 4.
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